Improved Port Knocking with Strong Authentication

Rennie deGraaf, John Aycock, and Michael Jacobson, Jr.

Department of Computer Science
University of Calgary
Calgary, Alberta, Canada

Overview

- 1) Usefulness of port knocking
- 2) How port knocking works
- 3) Problems with existing port knocking systems
- 4) Our improvements on existing systems
- 5) Areas for further work

Network Access Authentication

- Any service exposed to a public network can be attacked
- Limiting access by address is not adequate
- Limiting access by user requires authentication

Network Access Authentication

- Authentication is traditionally left up to the application
- But...
 - Some applications have no authentication
 - Flaws in authentication can allow it to be bypassed

Attacks on Network Authentication

```
_ D X
                                        xterm
64 bytes from 209.151.245.6: icmp_seq=1 ttl=61 time=196 ms
--- kremvax.cccp.su ping statistics ---
 packets transmitted, 2 received, 0% packet loss, time 1000 ms
[root@apollo "]# nmap -sS -0 kremvax.cccp.su
Starting nmap 2.3BETA13 ( http://www.insecure.org/nmap/ ) at 2000-01-21 07:03 PST
Interesting ports on kremvax (209.151.245.6):
(The 1660 ports scanned but not shown below are in state: closed)
        STATE
PORT
                SERVICE
22/tcp
                ssh
        open
23/tcp
                telnet
        open
80/tcp
              http
        open
Device type: general purpose
Running: Sun Solaris 2.4
Uptime 1865.356 days (since Mon Dec 12 22:30:14 1994)
Nmap finished: 1 IP address (1 host up) scanned in 44.631 seconds
[root@apollo ~]# telnet
telnet> environ define TTYPROMPT foobar
telnet> o kremvax.cccp.su
SunOS 5.4
ccccccccccccch
ast login: Wed Feb 15 01:27:31 1995
root@kremvax /]# 🛚
```

Attacks on Network Authentication

```
[mobile]
Starting nmap V. 2.54BETA25
Insufficient responses for TCP sequencing (3), OS detection may be less
accurate
Interesting ports on 10.2.2.2:
(The 1539 ports scanned but not shown below are in state: closed)
           State
                        Service
22/tcp
                        ssh
           open
No exact OS matches for host
Mmap run completed -- 1 IP address (1 host up) scanneds
# sshnuke 10.2.2.2 -rootpw="Z10N0101"
Connecting to 10.2.2.2:ssh ... successful.
Attempting to exploit SSHv1 CRC32 ... successful.
Reseting root password to "210N0101".
System open: Access Level <9>
# ssh 10,2,2,2 -1 root
root@10.2.2.2's password:
PRF_CONTROL> disable grid nodes 21 - 48
```

Image from The Matrix Reloaded, copyright 2003, Warner Bros.

Attacks on Network Authentication

Images copyright 1999, CNN

IP-level Authentication for Firewalls

- Defense in depth
- Stop-gap security measure for services with known unpatched vulnerabilities
- Wrapper for services without built-in authentication
- Makes service invisible to port scans

IP-level Authentication for Firewalls

```
xterm
                                                                                             _ D X
64 bytes from 209.151.245.6: icmp_seq=1 ttl=61 time=196 ms
--- kremvax.cccp.su ping statistics ---
 packets transmitted, 2 received, 0% packet loss, time 1000 ms
[root@apollo "]# nmap -sS -0 kremvax.cccp.su
Starting nmap 2.3BETA13 ( http://www.insecure.org/nmap/ ) at 2000-01-21 07:03 PST
Interesting ports on kremvax (209.151.245.6):
(The 1662 ports scanned but not shown below are in state: closed)
PORT
                   SERVICE
80/tcp
         open
                  http
Device type: general purpose
Running: Sun Solaris 2.4
Uptime 1865.356 days (since Mon Dec 12 22:30:14 1994)
Nmap finished: 1 IP address (1 host up) scanned in 44.631 seconds
[root@apollo ~]# 🗍
```

Requirements for Firewall Authentication

- Strong authentication
- Resistance to traffic interception and modification
- Interoperability with existing systems
- Low resource demands
- Simplicity
- Stealth

- Information is encoded as a sequence of TCP or UDP port numbers within a range
- Clients send empty packets to these ports
- Server watches for packets sent to these ports, decodes information, and performs some action

Other Work on Port Knocking

Problems with Existing Systems

- Plain-text authentication
- Broken cryptography
- Network Address Translators
- Sensitive to packet delivery order
- No association between authentication and connection

Enhancements to Port Knocking

- Challenge-response authentication that works even if the client is NATed
- Efficient encoding techniques that allow packets to be re-ordered on delivery

NAT-Aware Unilateral Authentication

- Variant on ISO two-pass unilateral authentication
- Uses server as an identity oracle for client
- The same idea also works for mutual authentication

- Examined four methods
- Delay between sending
 - Slow
 - doesn't allow packet loss detection
- Separate data and sequence number fields
 - Long sequences require either large port ranges or long execution times

- Encode data as a monotonically increasing sequence
 - Example: 1st packet to [0, 255], 2nd to [256, 511], 3rd to [512, 767], etc.
 - Same run time as above, but requires fewer ports
 - Easier to use with disjoint port ranges
 - Optimal point: authentication in 0.278 seconds over
 5120 ports on a slow network

Data: 73, 121, 92, 246, 149

Data: 73, 121, 92, 246, 149

Encode: send[i] = data[i] + 256*i + 1024

Send: 1097, 1401, 1628, 2038, 2197

Data: 73, 121, 92, 246, 149

Encode: send[i] = data[i] + 256*i + 1024

Send: 1097, 1401, 1628, 2038, 2197

Recv: 2197, 1079, 1628, 1401, 2038

Data: 73, 121, 92, 246, 149

Encode: send[i] = data[i] + 256*i + 1024

Send: 1097, 1401, 1628, 2038, 2197

Recv: 2197, 1079, 1628, 1401, 2038

Decode: sort(recv)

data[i] = recv[i] - 256*i - 1024

Data: 73, 121, 92, 246, 149

- Send packets with sequence numbers congruent mod *n* to the same range; others to different, unique ranges
 - Equivalent to previous method, except that the port range resets every *n* packets
 - Example: 1st packet to [0, 255], 2nd to [256, 511], ..., 21st to [0, 255],
 - Chance of failure
 - Only useful for long sequences (n > 20)

Weaknesses of Our Design

- No authentication-connection association
- If client is NATed, the server opens the port to the entire NATed network
- Knock sequences may be blocked by egress filters
- Failure on packet loss

Summary

- Port knocking is a practical way to add a lightweight authentication wrapper around existing services
- Current port knocking implementations have a variety of problems
- We have found solutions to several of these problems

Questions?

Improved Port Knocking with Strong Authentication

Rennie deGraaf, John Aycock, and Michael Jacobson, Jr.

{degraaf,aycock,jacobs}@cpsc.ucalgary.ca

Department of Computer Science
University of Calgary
Calgary, Alberta, Canada