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Abstract

It is sometimes desirable to allow access to open
ports on a firewall only to authorized external users and
present closed ports to all others. We examine ways
to construct an authentication service to achieve this
goal, and then examine one such method, “port knock-
ing”, and its existing implementations, in detail. We
improve upon these existing implementations by pre-
senting a novel port knocking architecture that provides
strong authentication while addressing the weaknesses
of existing port knocking systems.

1. Introduction

Thirty-five years after the birth of the Internet, it
has become well established that the Internet is a hos-
tile place. Any host connected to the Internet needs to
be secured against unauthorized intrusion and other at-
tacks. Unfortunately, the only secure system is one that
is completely inaccessible, but, to be useful, many hosts
need to make services accessible to other hosts. While
some services need to be accessible to anyone from any
location, others should only be accessed by a limited
number of people, or from a limited set of locations.

The most obvious way to limit access is to require
users to authenticate themselves before granting them
access. Traditionally, this is left up to the services them-
selves: before granting users access to anything impor-
tant, they must first prove their identity, using any one
of a number of methods. While this is effective, it is not
a perfect solution.

Many network services are large, complicated sys-
tems. It is not unheard of for flaws to be found in the
authentication mechanisms of some of these services
which could allow attackers to gain unauthorized ac-
cess. Also, some services are insecure by design: there
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is no way for users to authenticate themselves. A com-
mon solution to this is to limit the hosts from which
users can connect.

The usual method of limiting the sources of network
connections is to use a firewall. A firewall works by se-
lectively accepting or rejecting network packets based
on their source addresses or other characteristics. Un-
fortunately, source addresses on packets tell little about
the person who sent those packets; determined attack-
ers are quite capable of disguising the source of packets
that they send. Once a port on a firewall is open to one
host, any attacker could potentially (ab)use that open-
ing. Also, not all authorized users have predictable IP
addresses, so granting them access through a firewall re-
quires opening the firewall to much or all of the Internet.
Thus, while firewalls are useful and effective defenses
against many attacks, they are not complete solutions.

What is needed is a mechanism to open ports on a
firewall to authenticated users, without allowing other
traffic to pass. The obvious way to construct such
a mechanism is to run an authentication service on
firewalls, which validates the identity of remote users
and modifies firewall rules according to per-user access
policies. Such a service could be used for a number of
purposes, including:

• making services invisible to standard port scans;
• providing an extra layer of security that attackers

must penetrate before accessing or breaking any-
thing important;

• acting as a stop-gap security measure for services
with known unpatched vulnerabilities; or

• providing a wrapper for legacy or proprietary ser-
vices with insufficient integrated security.

There are a number of ways to create such an au-
thentication service; one is to use “port knocking”. In
this paper, we examine port knocking and its existing
implementations in detail. Our survey found a number
of flaws common to most or all existing port knocking
systems, including failure if a client is NATed, failure



if packets are delivered out of order, and a lack of as-
sociation between authentication and connections be-
ing opened. We then present a novel port knocking ar-
chitecture that provides strong authentication while ad-
dressing the problems associated with NATs and out-of-
order delivery.

2. Threats against firewall authentication
services

Authenticating users before allowing them through
a firewall is beneficial in two situations, each of which
assumes attackers with differing capabilities:

1. as an extra layer of defense for critical services
2. as a light-weight authentication service for inse-

cure legacy services

In the first case, such a service would be used to pro-
tect critical systems against attacks for which corrective
patches or upgrades have not yet been applied or are not
yet available. Assuming that patches and upgrades are
supplied soon after flaws are announced and deployed
immediately, attackers must be assumed in this scenario
to be dedicated and have access to significant resources,
including novel (“0-day”) attacks. In particular, such
attackers may be capable of subverting routers and in-
serting themselves between users and the authentication
service.

The second case defends against a much less capa-
ble form of attacker. For various reasons, network ad-
ministrators are occasionally required to allow remote
access to legacy services over the Internet. Such ser-
vices are frequently not securable by design, and may
be proprietary. If privacy, integrity and authentication
are required, then a system that supplies all three ser-
vices is needed, like a VPN. However, if privacy and
integrity are not required, then a simple authentication
system would suffice, which would need to prevent at-
tackers from masquerading as authorized users. Traffic
interception or modification is not a threat in this case,
since if attackers were capable of this, then they could
attack the protected service directly by modifying au-
thorized users’ unprotected data streams.

We take the conservative approach and assume in our
threat model that an adversary has the more powerful
capabilities relevant to the first model. In summary, we
assume that an adversary can:
• monitor and intercept all network traffic
• send packets with arbitrary source addresses
• replay captured network traffic
Further, we are only interested in attacks that could

cause the authentication system to incorrectly grant ac-
cess to an attacker at an arbitrary address.

2.1. Defenses required to address threats

In order to defend against the most dangerous type
of attacker, while remaining practical, an authentication
service should meet the following design goals:

1. strong authentication
2. resistance to traffic interception and modification
3. interoperability with existing network protocols

and devices
4. low demands on network and processor resources
5. simplicity

In order to prevent an attacker from trivially bypass-
ing authentication by guessing or replaying a captured
authentication token, authentication information must
be transmitted in a cryptographically secure manner.
Depending on the application, protection against traf-
fic interception and modification may also be required.
For reasons of practicality, the authentication exchange
should not require large amounts of network traffic or
processor time; furthermore, the protocol used should
not conflict with existing standards on IP, TCP, UDP,
or other network protocols and, where possible, should
not be affected by or interfere with existing firewalls,
gateways, or proxies. Finally, in order to lower the like-
lihood of the authentication service itself being compro-
mised due to implementation flaws, the service should
be simple and easy to audit.

Additionally, in order to prevent attackers with novel
attacks against the authentication service from targeting
it, it may be advantageous to hide the existence of the
authentication service from casual port scans.

3. Mechanisms for communicating with
firewalls

There are three ways that messages could be sent
from an authentication client to a server:

1. through an open port
2. through a closed port
3. through a side-band or covert channel

A conventional network service that communicates
over open TCP or UDP ports is obviously the easi-
est to build. It could be implemented quite easily us-
ing SSH or SSL port forwarding, or with IPSec. Al-
ternately, users could log into the server using SSH
and run a script to open the firewall to their machines.
However, each of these methods have some disadvan-
tages. The services involved are highly complex and
difficult to audit, thus replacing the threat of novel at-
tacks against some other service with the threat of novel



attacks against the authentication service. The added
computational overhead of the encryption provided by
SSH, SSL, or IPSec tunneling may not be required and
may be unacceptable under some circumstances. Also,
the solution using scripts launched over SSH connec-
tions requires that users have login accounts on the fire-
wall, which may not be feasible. The alternative is to
build a simple, dedicated authentication service.

A second communication mechanism is to build an
authentication server that listens on a closed port. By
using firewalling or packet logging software to redirect
all traffic sent to some port to the server, information
may be passed across closed network ports. If the trans-
port protocol is stateless and requires no connection-
establishing handshake phase (such as UDP), then
packet payloads may be delivered through this mech-
anism. If the authentication mechanism requires the
server to respond (to issue a challenge, for instance),
then this may be sent from a port that is closed imme-
diately after sending and does not receive any incoming
messages. Such a system has the advantage of being
invisible to port scans, although not to traffic analysis.
Obviously, if the authentication system requires a re-
sponse, then it should only respond to valid requests.

A further option is to use a covert channel as a com-
munication mechanism [1]. Without an existing con-
nection between client and server, authentication data
cannot be embedded in existing traffic. However, data
can be embedded in protocol headers on packets sent in
what could be made to look like a port scan. A tech-
nique which is in current use is port knocking [2, 3],
where data is encoded in TCP or UDP port numbers.
Other variations, including one that encodes data in
TCP option fields [4], have been tried, but using port
numbers has a number of advantages in that port num-
bers may be set by unprivileged user-space applications,
while TCP options usually cannot, and port numbers
are always logged by firewalling software, while option
fields are not always recorded. Thus, a port knocking
client can be a simple unprivileged user application, and
servers need no special packet capturing capabilities be-
yond basic logging support in the firewalling software.
Port knocking servers have the advantage of being invis-
ible to port scans, and port knocking exchanges appear
to be port scans to casual traffic analysis (although more
detailed analysis can detect that connections are opened
immediately afterward). Port knocking presents a num-
ber of unique issues, which will be discussed in detail
in the following sections.

4. Port knocking

Port knocking [2, 3] (also known as “Spread-
Spectrum TCP” [4]) is a technique whereby authenti-

cation information is transmitted across closed network
ports. A machine using port knocking closes all net-
work ports to all hosts but logs incoming packets. A
program watches the firewall logs for certain sequences
of packets, which encode authentication information
and requests to open or close ports. Based on this in-
formation, the port knocking system can choose to open
network ports to the originating host.

Figure 1. Port knocking example. The firewall
is opened in response to a specific port se-
quence used for authentication.

As a simple example of port knocking, a server
would close all ports and log requests to a specific port
range; either TCP or UDP ports can be used. If a client
transmits packets to a specific sequence of server ports
(for instance, 1145, 1087, 1172, 1244, and 1031, in that
order), then the server would perform some action (such
as opening the SSH port to the client host). Here, the
port sequence is a shared secret between the user and
the server; knowledge of the secret implies that the user
is authorized to access the protected service.

This particular application of port knocking is inse-
cure, because an attacker could sniff the secret sequence
from the network and replay it to get access to the pro-
tected service. However, other, more complex authenti-
cation procedures using port knocking exist, which we
will discuss in the following sections.

Based on how authentication is conducted, existing
port knocking applications fit into three categories:

• those that transmit a plain-text authentication to-
ken



• those that transmit a cryptographic proof of knowl-
edge of an authentication token

• those that transmit a one-time authentication token

Examples of such systems include Krzywinski’s
portknocking system [2] (which can be configured to
use either plain-text or encrypted authentication to-
kens), Doyle’s knockd/knockd [5] (which sends an en-
crypted token), and Spread-spectrum TCP, by Barham
et al. [4] (which uses a one-time token stream).1

All three types authenticate based on the knowledge
of some sort of secret key and assume that key exchange
is conducted by some out-of-band mechanism. Accord-
ingly, key exchange is beyond the scope of this paper.

Port knocking has often been accused of being a
form of “security through obscurity”. While this is true
in some cases (such as the simple example above), a
well-implemented port knocking system using strong
authentication is a secure system. The existence of the
service and the data transmitted to it are obscured in or-
der to raise the level of effort needed for a successful
attack, but the security of the system does not rely on
either of these properties.

5. Problems with existing systems

Systems that use plain-text authentication fail the re-
quirement for strong authentication, as captured tokens
can be trivially replayed. Port knocking systems using
either cryptographic or one-time tokens could provide
sufficiently strong authentication, provided that they
were implemented properly.

In our survey of existing port knocking authentica-
tion systems, we found the following three major prob-
lems present in most or all of them:

1. Out-of-order packet delivery. Port-knock se-
quences typically contain 64 to 160 bits, and are
usually sent at 8 bits per packet. Proper decoding
of port-knock sequences by most servers is depen-
dent on the order of arrival. According to Ben-
nett et al. [6], on certain busy Internet backbone
routers, the probability of out-of-order delivery of
at least one packet out of a burst of 20 can be
greater than 90%.2 Of the port knocking systems
we examined, only Barham’s [4] made any attempt
to deal with this problem.

2. Network Address Translators (NATs). If traffic
from a client passes through a NAT [8] en route

1A list of other port knocking implementations is available at http:
//www.portknocking.org/view/implementations.

2Paxson’s results [7] on older data indicated a much lower prob-
ability of out-of-order delivery, but still suggest that out-of-order de-
livery will occur often enough to be an issue.

to a server, and the client’s (private) IP address is
encoded in the authentication token, then the au-
thentication exchange, if successful, will result in
the correct port being opened to the incorrect client
address. If the public IP address is encoded in the
token, then the port will be opened to all hosts shar-
ing the same public address. If the client’s address
is not encoded in the token at all, then the public
address from the packet headers would likely be
used, leading to the same problem. No systems
that we found fully addressed this issue.

3. Lack of association between authentication and
connection. In no system that we found is there a
logical association between the authentication se-
quence and the connection that is created after a
port is opened. It is possible for an attacker to hi-
jack a successful authentication by blocking fur-
ther transmissions from a client and assuming its
identity to a server after authentication has com-
pleted, but before a connection has been opened.

In addition, many existing port knocking applica-
tions suffer from serious flaws in how cryptography
is applied to provide authentication. For instance, in
Doyle’s system [5], the IP address of the client, the re-
quested TCP port, and an open/close flag are concate-
nated and padded into a 64-bit message, which is en-
crypted using the Blowfish algorithm and a shared se-
cret key, and encoded into port numbers. The server
decrypts the message and opens or closes the requested
port to the client host, depending on the flag value. The
claim is that this construction prevents successful replay
attacks by preventing attackers from knowing what ac-
tion was taken; however, an attacker capable of inter-
cepting the authentication sequence would also be able
to infer the contents of the message by analyzing net-
work traffic for connections opened immediately after
an authentication exchange, or closed immediately be-
fore. Thus, the attacker could authenticate and gain ac-
cess by assuming the valid client’s IP address and re-
playing the authentication sequence. Another system,
Cryptknock [9], uses an unauthenticated Diffie-Hellman
exchange to generate a session key, which is then used
to encrypt a shared secret. The standard man-in-the-
middle attack against Diffie-Hellman would allow an
attacker to recover the shared secret and authenticate
at will. Krzywinski’s system [2] allows a wide variety
of possible configurations, most of them insecure, due
to plain-text password transmission, inappropriate ap-
plication of encryption (in the same manner as Doyle),
and insecure checksum algorithms.

Also, many existing systems (especially ones em-
ploying encryption) make no attempt to determine if
messages that they receive are authentic. For instance,



when Doyle’s system receives a message, it will decrypt
it and execute its contents. No attempt is made to en-
sure that the message was valid in the first place, so a
denial-of-service attack could be launched by sending
random data to it, with the result of polluting firewall
tables with random rules. In most configurations, Krzy-
winski’s system suffers from the same problems.

In some cases, the authentication token sent is not
bound to the client or the server. This could permit a va-
riety of masquerading, reflection, or man-in-the-middle
attacks under certain circumstances.

Another common flaw is the use of global shared se-
crets for authentication, known by all users of a port
knocking server. This leads to administrative difficulty
in changing keys. In conjunction with systems that al-
low clients to request the opening of arbitrary ports, a
key compromise would allow an attacker to open any
port on the system.

Some systems, such as Barham’s [4], use time-based
pseudorandom key streams in which keys must be valid
during a time window corresponding to the maximum
acceptable clock drift and the maximum transmission
time between client and server. This allows a win-
dow of opportunity for attackers to replay captured au-
thentication tokens. A window size of a few tenths
of seconds should be adequate for good security, but
this is only practical on low-delay networks with time
synchronization mechanisms in place. Between distant
hosts on the Internet under different administrative do-
mains, transmission delay alone may be up to half a
second, while poor deployment of time synchronization
systems makes clock drifts of several minutes common.
This leaves ample time for attackers to replay captured
authentication sequences.

Finally, all but one of the port knocking systems that
we examined will fail if any packets are lost, Barham’s
system being the exception. In many cases, neither
client nor server is capable of detecting packet loss.

6. A new port knocking design

Taking into consideration the strengths and weak-
nesses of existing port knocking designs (discussed in
Section 5), we have designed our own port knock-
ing system using a cryptographically-secure challenge-
response authentication system that accounts for out-of-
order packet delivery and partially addresses the com-
plications caused by NATs. An implementation is under
development.

6.1. Operation

Two common weakness in existing port knocking
systems are the use of global or per-port authentication

keys and the transmission of un-verified commands in
the authentication exchange. In order to avoid this, our
system allows passwords to be associated with actions
and unique operation IDs in the server’s configuration.
Each action will cause a particular port to open, a port to
open for a fixed period of time, or a port to close. This
will allow operators to configure detailed rules that limit
the possible actions taken. By setting passwords ap-
propriately on these rules, global, per-user, or per-port
passwords can be created.

During the authentication exchange, clients transmit
an operation ID, which will be used by the server to
identify the password to verify against and the action to
be taken upon successful authentication.

6.2. Authentication protocol

As indicated above, the choices for a strong authen-
tication mechanism are limited to challenge-response
systems and one-time password (OTP) systems. We
chose to use a challenge-response authentication sys-
tem, rather than OTP, for the following reasons:

• While time-based OTP authentication is practical
on low-delay networks with time synchronization
mechanisms in place, it is not sufficiently reliable
for use over the variable delays and unsynchro-
nized clocks of the open Internet.

• OTP schemes based on sequential password up-
dates [10] require a secure channel to transmit
the next password upon successful authentication.
Port knocking provides authentication only; no
such channel necessarily exists. While such a
channel could be created, it would be an unneces-
sary complication and would compromise the de-
sign requirement for simplicity.

• Other OTP schemes, using fixed password lists or
streams derived using one-time functions [10], re-
quire that an index into the password sequence be
stored. If the client and server keep track of this in-
dex independently, then software crashes could re-
sult in the client and server not agreeing on the in-
dex, preventing further successful authentication.
Such systems would also require that password
streams not be shared between users, unless the
users have some out-of-band mechanism for shar-
ing indices. If the server prompts the user with
a particular index (such as with S/Key [11]), then
we essentially have a challenge-response system
that protects against keystroke sniffing. While this
would work, we have chosen to use a simpler
challenge-response system that does not use one-
time passwords.



A challenge-response system necessarily requires
that the server return information to the client before the
exchange is complete, thus potentially exposing its ex-
istence to attackers and compromising the design con-
sideration for stealth. However, the loss of stealth can
be minimized if the client sends a fairly long request
sequence to trigger the issuance of a challenge, and if
unrecognized request sequences go unanswered by the
server. If the length of this request sequence is approx-
imately equal to the length of a plain-text or one-time
authentication token,3 then an observer will notice the
challenge being issued after a similar volume of com-
munication as it would observe the server responding
due to a connection being opened if a plain-text or one-
time system was in use. Obviously, an attacker who
intercepts a request sequence could replay it to receive
a challenge, but an attacker who observed the request
sequence already knows of the existence of the port
knocking service anyway. And as long as the authen-
tication mechanism is secure, there is no disadvantage
in sending challenges to attackers.

6.2.1. Basic unilateral authentication. A slight mod-
ification to the ISO two-pass unilateral authentication
[10, 12] exchange between a client A and a server B is
shown in Algorithm 1. In the following discussion, we
refer to message 1 as the request, message 2 as the chal-
lenge, and message 3 as the response.

Algorithm 1 Two-pass unilateral authentication
1: A → B: req
2: B → A: NA
3: A → B: MACKreq(NA, IDA, IDB)

where A is the client
B is the server
req is a request for authentication
NA is a nonce sent to A
Kreq is a secret key shared by A and B
IDX is the identity of a host X
MAC is a cryptographic message authentication

function
, (a comma) represents concatenation

A begins the sequence by sending a request, which is
a public string that will serve as the operation ID (see
Section 6.1). B responds to a recognized request by is-
suing a unique nonce as a challenge, and A responds
with a MAC covering the nonce and the IP addresses of
A and B. Upon receipt of the response, B re-computes
the MAC using the the nonce, A’s IP address as taken

3We doubt that any practical benefit would be obtained from using
request sequences longer than 5 to 10 bytes.

from the packet headers, and B’s own IP address. If the
MAC is valid, then B will perform the action associated
with the operation ID.

We have added A’s identity to the response in the
original ISO algorithm in order to prevent a man-in-the-
middle attack related to the grandmaster postal-chess
problem [10] in which an attacker C initiates the proto-
col and receives a challenge, intercepts (and blocks) a
challenge issued to A in another run of the protocol and
forwards its own challenge to A in order to get A to gen-
erate a valid response for C. By covering both IDs with
the MAC in the third message, Algorithm 1 prevents
C from subverting the protocol to authenticate to B as
itself, but does not prevent C from subverting the proto-
col by masquerading as A. However, this attack has the
end result of a port being opened to A’s address, which
is what A was originally trying to do in the first place.
To actually accomplish anything, C would then have to
communicate with the newly opened port while mas-
querading as A. This attack then becomes equivalent
to hijacking a successful authentication; see Section 7.1
for possible defenses.

6.2.2. Protocol considerations for NATs. One flaw in
Algorithm 1 is that it requires the client, A, to know its
identity as seen by the server, B. Unfortunately, if the
client is behind a NAT, then it may not know its public
address, and it may not even know that the NAT exists.
If A’s address is re-written, then A will use its private
address IDA to compute the challenge, but B will use A’s
public address PIDA to verify it, and authentication will
fail. As a partial solution to this problem, we propose
Algorithm 2, a NAT-aware variation on Algorithm 1.

Algorithm 2 NAT-aware unilateral authentication
1: A → B: req, IDA
2: B → A: PIDA,MACKreq(PIDA, IDA),NA
3: A → B: MACKreq (NA,PIDA,PIDB)

where A is the client
B is the server
req is a request for authentication
IDX is the private IP address of host X
PIDX is the public IP address of host X
NA is a nonce sent to A
Kreq is a secret key shared by A and B
MAC is a cryptographic message authentication

function
, (a comma) represents concatenation

In order to avoid needing to use third-party identity
oracles, B tells A its public identity in the challenge.
However, if this information is not somehow associated



with something known to A (such as A’s private iden-
tity), an attacker C could block the challenge and sub-
stitute its own. A would then generate a response that is
invalid for itself, but valid for C. So, we add a MAC to
the challenge covering A’s public and private identities.
This requires that B know A’s private identity, so it will
be sent along with the request.

This algorithm should also work even if A is not
NATed; this is important in the case that A does not
know if it is NATed or not.

6.3. Communication protocol

Since we are using port knocking as a data trans-
port mechanism, all messages sent from the client to
server (i.e., the request and response) must be encoded
as sequences of TCP or UDP port numbers. We chose
UDP over TCP because, UDP being stateless, it is less
likely to impose processing overhead on any gateways
or packet filters present between client and server. Also,
UDP headers are smaller than TCP headers, so the null-
payload packets used are significantly smaller. Infor-
mation is encoded only into destination port numbers,
because this is the only field in the UDP/IP header that
is not required for network-layer delivery, is not likely
to be modified by gateways or proxies, and can be spec-
ified by unprivileged user programs. This limits the
amount of data that can be sent per packet to 16 bits, as-
suming that all 65536 UDP ports are monitored for port
knocking traffic. In order to avoid monitoring ports that
are already in use (whether opened by port knocking or
not) and ports used by outgoing communication, it may
be necessary to limit the port range being used.

Messages sent from the server to client need not fol-
low these restrictions. Therefore, we will send the chal-
lenge as a single UDP packet, directed to the source port
used in the knock sequence.

6.3.1. Considerations for packet re-ordering. As de-
scribed in Section 5, if packets are delivered out of or-
der by the network layer, the message received will be
undecipherable, and authentication will fail. We have
devised two methods to overcome this problem.

The simplest way is to split each port number into
data and sequence number fields. Upon arrival, the
packets can be sorted by sequence number before the
data fields are decoded. Note that this limits the amount
of data that can be carried per packet, and that the se-
quence number field must be wide enough to uniquely
identify each packet.

We present an analysis comparing the minimum pro-
tocol execution time under the optimal number of data
and sequence number bits per packet to the size of the
port range required in Table 1. For the purposes of this

analysis, we assume that request sequences are 10 bytes
long, challenges and MACs are 20 bytes, and Algo-
rithm 2 is used for authentication, thus making the re-
quest message 112 bits long, the challenge 352 bits, and
the response 160 bits. We further assume that network
bandwidth is 64Kbps with a round-trip time (RTT) of
100ms, and disregard all processing time.

Table 1 Port knocking with sequence numbers: size of
port range vs. minimum protocol execution time

Data bits
per packet

Sequence
number
bits per
packet

Size of
port range

Execution
time

(seconds)

12 4 65536 0.243
10 5 32768 0.257
9 5 16384 0.268
8 5 8192 0.278
7 5 4096 0.300
6 5 2048 0.320
5 5 1024 0.352
3 6 512 0.481

This analysis shows that even under the fairly pes-
simistic network conditions that we assumed, and the
rather inefficient transport mechanism of port knocking
for the request and response messages, authentication is
fairly fast. In all but the most inefficient configurations,
execution time is dominated by the RTT. There is lit-
tle speed to be gained by encoding more than 8 bits of
data per packet (over a range of 8192 ports); allocating
a contiguous range of 8192 ports should not be diffi-
cult on most systems. A slight further speed improve-
ment could be obtained by using different numbering
schemes for the request and response messages. Note
that it is not possible to send 160 bits of data to a range
of fewer than 512 ports with each packet carrying a dis-
tinct sequence number. Also, this encoding limits the
maximum request sequence length to about 16 bytes.

A second way of encoding sequencing information
into a port knocking sequence is to encode data as the
differences between a sequence of monotonically in-
creasing port numbers. For example, while sending 8
bits per packet to a range starting at port 1024, the se-
quence ”121, 63, 148, 220, 7” could be encoded as
”1145, 1208, 1356, 1576, 1583”. An analysis of this
technique is presented in Table 2, under the the same as-
sumptions as above. This technique makes it impossible
to accurately detect packet loss, but a similar technique
allowing loss detection would be to send each packet
containing b bits of data to a unique range of 2b ports,
where the range for packet n begins above the top of the
range for packet n−1. Note that the port range and time



requirements of both of these techniques are identical.

Table 2 Port knocking with monotonically-increasing
port numbers: size of port range vs. minimum protocol
execution time

Data bits per
packet

Size of port
range

Execution time
(seconds)

12 57344 0.243
11 30720 0.250
10 16384 0.257
9 9216 0.268
8 5120 0.278
7 2944 0.300
6 1728 0.320
5 1024 0.352
4 640 0.397
3 432 0.481
2 320 0.635
1 320 1.111

This technique makes complete use of its “sequence
numbers”, so it can encode the same amount of infor-
mation into smaller port ranges. Once again, there is
little to be gained by encoding more than 8 bits of data
per packet, but this time, only 5120 ports are required
– this method encodes the same amount of information
over a smaller port range. Note that the 16-bit port space
provided by UDP does not allow sufficient ports to be
allocated to send more than 12 data bits per packet.

An alternative would be to eschew sequence num-
bers altogether and enforce a brief delay between send-
ing packets; this would significantly reduce the chance
of out of order delivery. Unfortunately, as shown in Ta-
ble 3, the delay must be very short before this method
begins to out-perform the two presented above, and the
probability of failure increases significantly as the de-
lay decreases. Also, it would not be possible to detect
packet loss while using this method.

6.4. Weaknesses of our design

Despite the improvements that we have made over
other port knocking designs, our system still has its
flaws.

Our system does not address the lack of a logical
connection between an authentication sequence and any
connections that open as a result. The architecture
of current Internet protocols, firewalls, and application
software make a complete solution difficult. Some par-
tial solutions are described in Section 7.1.

While our system will allow NATed clients to au-
thenticate, successful authentication will cause the tar-
get firewall to open the requested port to all other hosts

Table 3 Port knocking with enforced delays between
packets: size of port range vs. minimum protocol exe-
cution time

Data bits
per packet

Size of
port range

Execution
time

(delay = 5
ms)

Execution
time

(delay = 2
ms)

15 32768 0.311 0.260
14 16384 0.319 0.265
13 8192 0.336 0.276
12 4096 0.353 0.287
11 2048 0.370 0.298
10 1024 0.387 0.309
9 512 0.413 0.323
8 256 0.438 0.342

on the same NATed network having the same public IP
address as the client. In most cases, this should not
be a serious exposure. It may not be possible to com-
pletely solve this problem without installing protocol
interpreters on the NATs.

The authentication mechanism that we use is unilat-
eral; no attempt is made to authenticate a server to a
client. If an attacker is able to masquerade as a server
to a client, then the client has no way of knowing that
the server to which it is connecting is not the intended
server. Similarly, an attacker could gain access to a
server through an interleaving attack [10], if the attacker
is capable of masquerading as a valid client to a server
and as a valid server to a client. Port knocking systems
in general leave server authentication up to higher-level
protocols, but in the case of such an interleaving attack,
this is already too late. A potential solution to this prob-
lem is presented in Section 7.2.

Many potential client machines are located behind
firewalls that permit outbound traffic to well-known
ports, such as HTTP, but would not pass outbound UDP
traffic destined to seemingly random ports. In such an
environment, authentication would fail. Workarounds
to this problem are presented in Section 7.3.

While the techniques presented in Section 6.3.1 al-
low the system to work if packets are delivered out of
order, the system will fail if any packets are lost. If a
packet in the request sequence is lost, then the challenge
will never be issued; a client should eventually realize
this and re-transmit the request. The same should hold
if the challenge is lost. If a packet of the response se-
quence is lost, then authentication will not complete.
Since the server does not notify clients of successful
authentication, the error will only be noticed when the
client attempts to open a connection. The only way to
recover at this point is to start over.



7. Further extensions

There are a number of ways by which our sys-
tem could be extended, including associating knock
sequences with connections, mutual authentication,
knocking at different protocol layers, virtual port
knocking servers, and public key authentication.

7.1. Authentication-connection association

Under some circumstances, it may be possible to
solve the problem of the lack of a logical relation
between authentication and the subsequent connec-
tion. For TCP connections, for instance, a port knock-
ing client opening a connection to a server through a
knocked-open port could initially exchange a secondary
authentication with a small “wrapper” server, part of
the port knocking system. A successful secondary ex-
change would result in the client handing the open TCP
connection off to the real client program; on the server
side, the wrapper would hand off or tunnel the TCP
connection to the real server. Such a mechanism could
be used in conjunction with client and server software
that support passing off connections, or with client- and
server-side port knocking proxies.

Instead of opening the port associated with a request
sequence, the server could open a random port and for-
ward everything sent to it to the target port. The ran-
dom port number could be encrypted with AES using
the shared key and appended to the challenge message.
If the server closed the random port as soon as the first
connection to it was received, then the port would al-
ready be closed by the time an attacker has determined
which was opened. This would work for both TCP and
UDP and requires that client applications can be config-
ured to connect to arbitrary ports.4

Another alternative for TCP connections would be to
negotiate the initial sequence number (ISN) to be used
in the subsequent connection during the authentication
phase. As long as this value is hidden from any at-
tackers, it could be used to verify the TCP connection.
This solution would require either that the authentica-
tion mechanism be built into operating system TCP/IP
stacks or that operating systems be given support for
user-space ISN generation.

7.2. Mutual authentication

As noted in Section 6.4, Algorithm 2 is still vulner-
able to attacks in which an attacker masquerades as a
server. One solution is to add a nonce to the client’s re-
sponse (step 3), and add another step to the exchange to
authenticate the server to the client, in a exchange sim-

4Thanks to an anonymous reviewer for suggesting this method.

ilar to ISO three-pass mutual authentication [12]. Al-
gorithm 3 is a variation on Algorithm 2 that supports
mutual authentication.

Algorithm 3 NAT-aware mutual authentication
1: A → B: req,NB
2: B → A: PIDA,MACKreq(NB,PIDB,PIDA),NA
3: A → B: MACKreq (NA,PIDA,PIDB)

where A is the client
B is the server
req is a request for authentication
IDX is the private IP address of host X
PIDX is the public IP address of host X
NX is a nonce sent to host X
Kreq is a secret key shared by A and B
MAC is a cryptographic message authentication

function
, (a comma) represents concatenation

Unfortunately, this algorithm would require a client
to transmit its own nonce of about 20 bytes by port
knocking as part of the request message (although it no
longer needs to send its private identity). The analysis
we performed in Section 6.3.1 will no longer be valid
for this protocol; significantly increased time require-
ments and port ranges will be required to transmit the
extra data. One way to shrink the port range required
by this algorithm at a cost of a low chance of failure
would be to assume that all packets sent with sequence
numbers congruent modulo n would arrive in order and
reset the packet sequence number or port range every n
packets. For n = 20, the port ranges required by such a
system are the same as those presented in Section 6.3.1,
albeit with a chance of failure if re-ordering across an
n-packet boundary occurs.5

7.3. Generalized knocking

The concept of port knocking does not necessarily
have to be applied at the network/transport layer; it can
also be applied to create covert channels at the applica-
tion layer. In such a system, a client would sent knock
messages to the same well-known port, where a lis-
tening server would reconstruct the authentication mes-
sages. For example, information could be encoded as
DNS6 or HTTP requests. To send the sequence “123,
456, 78”, a client could look up “123.somedomain.zz”,
“456.somedomain.zz”, then “78.somedomain.zz”, or

5The exact probability of failure using this method is beyond the
scope of this paper.

6At least one existing port knocking system, CÖK [13], uses DNS
requests as a transport.



request “123.html”, “456.html”, then “78.html”.
Such a system would work even if an egress fire-

wall prevents a client from sending UDP port knock-
ing sequences, as described in Section 6.4. Optionally,
the next connection made after a successful authentica-
tion could be tunneled to the desired service; this would
allow connections to arbitrary ports to be made past
egress filters that would block a direct connection.

Obviously, there is a great deal more overhead in-
volved in such a system, but it does demonstrate that
knocking is feasible even if the client’s communication
ability is constrained.

7.4. Other extensions

A more surreptitious knocking scheme would in-
volve multiple computers acting as a “virtual port
knocking server.” A knock sequence need not be sent
to a single computer but could be split and sent to mul-
tiple computers, which would coordinate the informa-
tion (perhaps by centralizing individual computers’ fire-
wall logs) to authenticate the client. The port opened by
a successful knock sequence need not even be on the
same machine(s) as where the knock packets were sent,
further confounding an attacker.

It should be possible to alter the authentication proto-
col to use digital signatures and public-key certificates
rather than a private-key MAC. This would not affect
the overall security of the protocol, but could make key
management much simpler.

8. Conclusion

Port knocking can be used to construct authentica-
tion systems on firewalls with the goal of only allowing
authorized users access to open ports.

Port knocking systems may be dismissed as simply
“security through obscurity”. While we disagree with
this – port knocking can be done securely – the fact of
the matter is that such systems are in active use, and it
is thus advisable to make them as strong as possible.
They can be seen as complementary to existing defen-
sive systems, as part of defense in depth, or as a means
to secure weak legacy systems.

Existing port knocking systems have three main
flaw: they do not always work reliably in the presence
of NATs, they fail if packets are delivered out of order,
and they do not associate authentication exchanges with
connections opened afterwards. The port knocking sys-
tem that we have presented here improves on current
systems by using a novel authentication algorithm that
is unaffected by NAT and an efficient packet-reordering
system that ensures that messages can be decoded on
delivery.
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